

Точное определение размеров частиц в аэрозолях и спреях

Введение

Размер частиц спреев и аэрозолей это основной параметр, определяющий качество и характеристики продукции в ряде областей: от доставки лекарственных препаратов в дыхательную систему человека и до приложений, связанных с нанесением различных покрытий и применений в агрохимической отрасли. Исследование спреев предъявляет специфические требования как к среде, в которой осуществляется измерение, так и к скорости сбора данных при измерении. Система Malvern Spraytec разработана именно с учётом этих требований и обеспечивает простоту, надёжность и точность измерения размеров частиц спреев.

Система Malvern Spraytec, позволяющая осуществлять онлайн-анализ аэрозолей и спреев с высокой концентрацией частиц, разработана на основе надёжной, простой и удобной в использовании платформы. Быстрые измерения в режиме реального времени обеспечивают получение качественного результата, как в случае непрерывного, так и импульсного распыления. Быстрое формирование и наглядное представление результатов позволяет легко анализировать кинетику распыления. Регистрация широкого диапазона размеров определяет высокую чувствительность системы к изменениям распределения частиц по размерам в спрее. Модульная конструкция и идеальная влагозащищённость обеспечивают надёжность работы и точность получаемых результатов даже в случае исследования широкого факела спрея.

Уникальные возможности

При разработке системы Spraytec был использован весь огромный опыт компании Malvern в области анализа спреев. Созданная в результате система позволяет получать точный результат при исследовании спрея любого типа.

 Производить быстрые	Spraytec предоставляет Скорость сбора данных 10 кГц позволяет получать результат	
производить оыстрые измерения	скорость соора данных то кт ц позволяет получать результат каждые 100 мкс, что обеспечивает высокую точность анализа динамики распыления спреев. Так же отслеживаются быстрые изменения размеров частиц при импульсном распылении, что невозможно осуществить в случае «медленных» систем.	
Регистрировать широкий диапазон размеров частиц	Система Spraytec измеряет частицы в диапазоне от 0.1 до 2000 микрон при использовании набора лишь из двух линз с динамическим диапазоном 1000:1. Это позволяет легко анализировать достаточно широкие распределения.	
Проводить анализ при высоких концентрациях частиц	Применение запатентованной технологии, учитывающей многократное рассеяние света, обеспечивает точность измерения при высоких концентрациях частиц в спрее. Благодаря этому система Spraytec надёжно работает даже в тех случаях, когда невозможен анализ традиционными приборами в основу работы которых положен метод лазерной дифракции.	
Исследование широкого факела спрея	Конструкция системы Spraytec обеспечивает большой размер рабочей зоны. Дополнительное использование эффективной системы воздушной очистки оптики обеспечивает надёжность полученных результатов при исследовании плотных и широких струй спреев.	
Надёжность и простота измерений	Надёжность и простота эксплуатации системы Spraytec достигаются за счёт специфики конструкции оптической системы и программного обеспечения. Автоматическая юстировка обеспечивает оптимальные условия измерительного процесса. Использование встроенной системы стандартных протоколов измерений (SOP) существенно упрощает проведение измерения.	
Наглядность представления и удобство анализа цанных	Уникальный формат сохранения «истории» данных, используемый в программном обеспечении системы Spraytec, позволяет отслеживать динамику изменения размеров частиц в процессе распыления, легко и быстро осуществлять анализ и интерпретацию результатов, их отображение в режиме реального времени, обеспечивает проведение длительных измерений. Простая реализация процедуры обработки и анализа данных различных экспериментов.	
Соответствие стандартам	Полное соответствие требованиям международного стандарта ISO 13320. Предоставляется исчерпывающая документация, согласно требованиям GAMP. Предоставляется документация по системе контроля работоспособности прибора при инсталляции и эксплуатации (IQ/OQ). Программное обеспечение удовлетворяет требованиям части 11 21CFR обеспечения безопасности многопользовательского режима работы.	

Широкие возможности анализа спреев

В основу работы системы Spraytec положен метод лазерной дифракции, при котором рассеянное каплями спрея излучение регистрируется под разными углами с помощью высокочувствительного кремниевого детектора - фотодиодной матрицы. При прохождении струи спрея через луч лазера производится измерение углового распределения света, рассеянного частицами. Снятая таким образом индикатриса рассеяния затем анализируется с использованием наиболее подходящей оптической модели и осуществляется вычисление распределения частиц по размерам.

Угловой диапазон, в котором осуществляется регистрация рассеяния, оптимизирован в системе Spraytec таким образом, чтобы обеспечить наилучшее разрешение для распределений по размерам полидисперсного типа. Вычисление размера частиц осуществляется с использованием запатентованного алгоритма анализа многократного рассеяния. Это обеспечивает получение корректных результатов даже в случае 98% ослабления светового луча при прохождении через образец, что находится далеко за рабочими пределами систем,

Простота управления системой

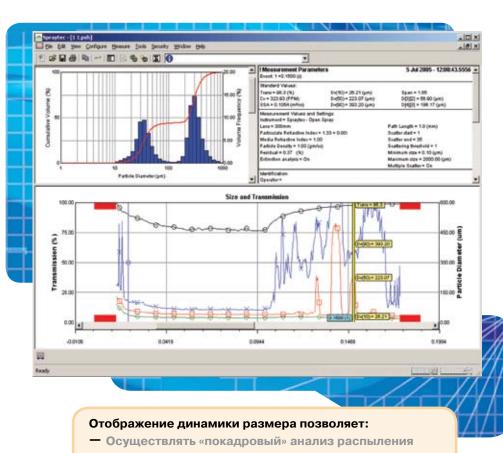

Реализованное на высоком уровне программное обеспечение системы Spraytec, предоставляет пользователю сочетание лёгкости управления и доступ к использованию мощных измерительных и аналитических возможностей.

Настройка стандартных протоколов измерений (SOP) при помощи встроенного системного Мастера. Измерительные этапы включают: конфигурирование оборудования, установку параметров анализа, определение условий запуска, формирование отчёта о результатах и усреднение данных. Предоставляется оперативная справка по условиям измерения спреев различных типов.

Выбор стандартного протокола измерения из системного меню. При этом производится автоматическое конфигурирование системы, включая автоматическую юстировку оптической системы, и обеспечение оптимальных настроек для получения точного результата. Синхронизация с внешними системами, такими как экстракторы, системы регулировки и позиционирования.

Детальный контроль этапов измерения и анализа посредством специального окна программного обеспечения

— «Менеджер измерения». Справка и подсказки обеспечивают корректность процедур подготовки, подачи и удаления образца.


Просмотр «истории» изменения размеров в специальном окне. При этом выводится как записанное распределение частиц по размерам, так и график «истории» изменения размеров, отображающий временную динамику. Пользователь может повторно просмотреть процесс распыления, а так же выбрать записи для дальнейшего анализа.

После завершения анализа, система автоматически будет готова к осуществлению следующего измерения.

Анализ динамики распыления

Для понимания динамики распыления спрея необходима возможность быстрого измерения размера частиц и его изменения во времени. Уникальная возможность программного обеспечения системы Spraytec регистрировать «историю» данных, позволяет осуществлять просмотр «покадровой» развёртки распределений частиц по размерам, записанной в процессе распыления. Это позволяет установить динамику изменения размера частиц во времени. В каждый момент времени наряду с распределением частиц по размерам отображается вся сопутствующая информация. Пользователь может определить те параметры, которые будут отражены на временной диаграмме, а так же выбрать записи, для которых необходимо произвести усреднение, экспорт или повторный анализ.

- Быстро просмотривать результаты
- Выбирать сравниваемые результаты методом перетаскивания (drag-and-drop)
- Изменять масштаб для оценки динамики в различные периоды времени
- Использовать расширенные возможности статистического анализа
- Выводить данные рассеяния и распределения по размерам для любого момента времени
- Использовать возможности поиска для нахождения требуемых результатов
- Производить наложение результатов в различных временных точках
- Отображать временные метки и группы данных

Приложения

Модульная конструкция системы Spraytec идеально подходит для решения широкого круга задач в различных областях науки и промышленности, начиная от фундаментальных исследований и разработок и заканчивая контролем качества продукции. Система обеспечивает точность и воспроизводимость получаемых результатов при анализе размеров частиц спреев и аэрозолей, обладает легким для понимания видом представления результатов, что, безусловно, способствует как лучшему пониманию производственных процессов так и их контролю.

Фармацевтика

Размер частиц - это ключевой параметр, определяющий как биодоступность так и характер отложения лекарственного препарата, доставка которого

осуществляется посредством впрыска или ингаляции в носовую полость и дыхательную систему. При помощи системы Spraytec можно определить изменение размеров частиц за период одиночного срабатывания прибора для впрыска лекарственного вещества, что позволяет определять как динамику распыления частиц, так и воспроизводимость работы дозатора. Возможность быстрого проведения исследований сокращает время разработки новых лекарственных препаратов и систем их доставки.

Исследование распыления

Размер капель, получающихся в результате распыления, является одним из ключевых параметров,

способствующих пониманию воздействия спреев на окружающую среду, например, в лакокрасочной и агрохимической промышленности. Надёжность конструкции системы Spraytec, система эффективной воздушной очистки оптики и учёт многократного рассеяния, обеспечивают возможность измерений при высоких концентрациях непосредственно в струе спрея, с регистрацией изменения размеров частиц при распылении в режиме реального времени.

Автомобильная промышленность

Возможность системы Spraytec осуществлять очень быстрый сбор данных (до 10 кГц) позволяет регистрировать флуктуации размеров капель, наблюдающиеся во время быстрого впрыска топлива в инжекторных системах автомобилей. Возможность синхронизации с внешним сигналом обеспечивает регистрацию полного цикла каждого впрыска, определения его параметров и сопоставление их с эффективностью сгорания.

Спецификации	Spraytec	
Оптический модуль Принцип измерения	Лазерная дифракция	
Диапазон размеров	0.1 мкм – 2000 мкм	
Модели рассчётов	Теория Ми, приближение Фраунгофера, учёт многократного рассеяния	
Линзы	300 мм: 0.1 – 900 мкм (Dv50: 0.5 – 600 мкм) 750 мм: 2.0 – 2000 мкм (Dv50: 5 – 1600 мкм)	
Рабочая зона	100 мм при 0.5 мкм, >1 м при 10 мкм	
Диапазон концентраций	Минимально приемлемое светопропускание 5% (зависит от диапазона размеров)	
Система детектирования	35-ти элементная полупроводниковая детекторная матрица (расположение элементов детектора с логарифмическими интервалами)	
Источник света	Гелий-неоновый лазер, длина волны 632.8 нм, мощность 5 мВт	
Класс безопасности лазера	Класс 3R	
Система оптической юстировки	Быстрая автоматическая юстировка системы	
Максимальная скорость сбора данных	Режим непрерывной работы: 1 Гц Быстрый режим: 2.5 кГц (стандарт), 10 кГц (опция)	
Точность	Лучше чем ± 1% для Dv50 (NIST-стандарт латекса)	
Воспроизводимость	Лучше чем ± 1% для Dv50 (NIST-стандарт латекса)	
Повторяемость между приборами	Лучше чем ± 1% для Dv50 (NIST-стандарт латекса)	
Синхронизация измерений	Внутренняя: по уровню поглощения или уровню рассеяния Внешняя: по сигналу от внешнего устройства	
Синхронизация с внешними приборами	Посредством двух TTL выходов	
Программное обеспечение Минимальные требования к компьютеру	DELL Mini Tower PC, процессор 2.8ГГц Intel Pentium IV, оперативная память 512 Gb, HDD 160 Gb, привод CD-RW, мышь, клавиатура, 17" LCD монитор. Для подключения привода назальных спреев требуются один свободный разъём PCI и один свободный COM порт	
Операционные системы	Windows XP Professional (Service Pack 2 или выше)	
Соответствие 21CFR11	Техническое соответствие обеспечивается за счёт многоуровневой системы безопасности, ведения журнала безопасности и использовании электронных записей и электронных подписей.	
Внешние условия Требования к помещению	Влагозащищённость по стандарту IP65 для модулей передатчика и приёмника в режиме нормальной работы	
Температура	15°C - 40°C	
Влажность	35% - 80%, отсутствие конденсации	
Масса и габариты Модель Оптическая скамья (300 мм) Оптическая скамья (500 мм)	Масса без упаковки (кг) 36 37	Габариты (длина, ширина и высота в мм) 950x550x610 1400x550x610

Доступность передовых технологий

ООО «КД Системы и Оборудование»

официальный торгово-технический представитель в России

Демонстрационно-методический центр

Россия • 197375 • Санкт-Петербург • Вербная ул. д. 27 **Телефон**: (812) 319-55-72 • **Факс**: (812) 319-55-72

Москва

Телефон/факс: (495) 640-55-71

www.kdsi.ru • sales@kdsi.ru

